Dr. Haynes invited to speak at University of Oregon

Posted on

Dr. Haynes has been invited to the University of Oregon to present a talk entitled “Drugging the cancer epigenome with synthetic chromatin-based proteins” for the Engineering Biomolecules Mini-Symposium on Friday, June 22, 2018 in the Willamette Hall. The mini-symposium is organized by students in the University of Oregon’s Molecular Biology and Biophysics training program, and showcases six world-class researchers from the field of biomolecular engineering.

Advertisements

Dr. Haynes invited to NCI CSSI Science Day Workshop

Posted on

Dr. Haynes has been invited to the 6th Annual NCI CSSI Science Day Workshop, hosted by the NIH Center for Strategic Scientific Initiatives (CSSI), National Cancer Institute (NCI) in Bethesda, MD. The NCI CSSI has hosted Science Day meetings to convene extramural investigators and NIH/NCI program staff with the goal of facilitating scientific conversations and identifying needs and opportunities across cancer research. Dr. Haynes will present a talk entitled “Engineered chromatin to support epigenetic research and drug development for cancer” on Thursday, June 7, 2018 at the Porter Neuroscience Research Center.

Research – ACS Biochemistry – Design, construction, and validation of histone-binding effectors in vitro and in cells

Posted on

Design, construction, and validation of histone-binding effectors in vitro and in cells
Tekel SJ, Barrett CM, Vargas DA, Haynes KA. (2018) ACS Biochemistry. https://pubs.acs.org/doi/10.1021/acs.biochem.8b00327 (Just Accepted manuscript)

In a special topic issue from ACS Biochemistry: From the Bench, we describe our workflow for quick screening and validation of customized histone-binding fusion proteins. Since our previous report where we enhanced the activity of one such fusion called PcTF, we modified our procedure to circumvent the need to generate large quantities of fusion proteins in bacterial cultures. Instead, we use cell-free transcription-translation (TXTL) to generate small batches of variant proteins, quantify the product with ELISA, and determine relative avidities using immobilized histone peptides in an ELISA format. We demonstrate that relative binding determined by ELISA is consistent with the strength of gene-regulation activity at a target gene in HEK293 cells. Our ongoing work aims to miniaturize this technique even further for rapid exploration of the vast design space for synthetic epigenetic effectors.

Dr. Haynes visits Mayo Clinic AZ to discuss synthetic biology and cancer

Posted on Updated on

Synthetic biology is a field that aims to use what basic research has taught us about DNA and proteins to design and build “living nanotech” that controls cell behavior. Dr. Haynes was invited to present her latest work on synthetic proteins to control gene expression in cancer as part of the Mayo Clinic‘s “Science of Medicine” seminar series. She presented a talk entitled “Engineered chromatin systems to support epigenetic therapy of cancer” on Thursday, May 24, 2018 in the Johnson Research Building and visited with several outstanding Mayo Clinic researchers to discuss the intersection of protein engineering with epigenetic medicine to treat mixed myeloid leukemias and other devastating cancers. Haynes hopes to continue such conversations so that her research can be informed by clinical needs, and even become part of new clinical collaborations.

Dr. Haynes invited to speak at UCLA

Posted on

Dr. Haynes has been invited to the University of California Los Angeles (UCLA) to present a talk entitled “A pipeline to engineer synthetic epigenetic proteins derived from chromatin” for the UCLA Bioengineering Department Seminar Series on Thursday, May 17, 2018 in the Engineering V building.

Kimberly Olney receives a 2018 ARCS award

Posted on

Congratulations to Kimberly Olney (PhD, SOLS) who just received a 2018 Achievement Rewards for College Scientists (ARCS) Award.  Kimberly is a graduate student who studies genomics and bioinformatics under the mentorship of Dr. Melissa Wilson Sayres, and has collaborated with the Haynes lab to discover genes that are controlled by synthetic chromatin regulators in breast cancer.

Read the rest of this entry »

Fatima Hamna receives a 2018 MORE fellowship for Master’s research

Posted on

Congratulations to Fatima Hamna (Master’s, Biomedical Engineering) who will be joining the Haynes lab this summer with support from the new Master’s Opportunity for Research in Engineering (MORE). She will receive a stipend, materials and supplies, and the opportunity for travel support to present at a research conference.

Read the rest of this entry »